Physical Volcanology

Instructor: Prof. Joe Dufek
Office: ES&T 2248
Phone: 404-894-9472
Email: dufek@gatech.edu
Office Hours: Monday 10:30 -11:30 or by appointment.
Course Website: http://shadow.eas.gatech.edu/~dufek/PhysicalVolcanology/Physical_Volcanology.html or access through T-Square.

Prerequisites: No prior courses are required, although some previous experience with either continuum mechanics or fluid dynamics will be useful.

Course Overview:
Volcanic eruptions are the surface expression of the transfer of mass and volatiles from the deep interior of the planet. Violent eruptions rapidly transform the landscape and impact the atmosphere on short timescales, and the integrated history of magmatism has played a central role in the production of the crust and the degassing history of the planet. The fluid dynamics of volcanoes span a vast array of phenomena from viscous magma flows to turbulent, multiphase eruptions. This course will trace the path of magmas from their ultimate source in the mantle, storage and evolution in the crust, through eruption at the surface where they interact with the landscape and atmosphere. This course is intended to introduce students to applied fluid dynamics in the context of volcanology while also introducing them to ongoing work in the field on the evolution of crustal structure and atmospheric interaction of volcanic eruptions.

No required textbook. Supplemental texts:

Course Outline
1. Overview of volcanic eruption styles and their connection to planetary heat and volatile transfer.
2. Derivation of conservation equations (mass, energy and momentum).
3. Mantle melting and melt properties: The role of water in planetary volcanism.
4. Magma in the crust: Diffusive and convective heat transfer in magma chambers.
5. Crystal-melt separation and crustal production: the crustal mass balance paradox.
7. Fragmentation and conduit dynamics: Why do some magmas fragment while other erupt effusively?
8. Effusive eruptions, lava flows and large igneous provinces. Discussion of flood basalts and their volatile transfer to the atmosphere. How can we infer the volatile content of past eruptions?
10. Volcanic plumes and atmospheric interaction; multiphase flow at high Reynolds numbers.
11. Pyroclastic flows and gravity currents; Scaling arguments and granular mechanics.

Coursework
1. Weekly problem sets. (30%)
2. Review paper on a topic of active debate/controversy in the field of volcanology. (20%)
3. Midterm Exam (20%)
4. Final Exam (30%)